SAT MATH PRACTICE PAPER

```
Three vases each contain 12 flowers. Some flowers are to be removed from one
vase and placed in another vase to make the ratio of flowers in the three vases
3:2:1. What is the least number of flowers that must moved to accomplish this?
C
    18
O
O
O
O
```

If $-1<x<0$, which of the following statements must be true?
A. $x<x^{2}<x^{3}$
B. $x<x^{3}<x^{2}$
C. $x^{2}<x<x^{3}$
D. $x^{2}<x^{3}<x$
E. $x^{3}<x<x^{2}$

C A
C B
${ }^{\circ} \mathrm{C}$
C D
C E

```
For how many values of n where }\textrm{n}\mathrm{ is a positive integer less than 10 is ( }\textrm{n}+1)/2\mathrm{ an
integer?
O None
One
O Six
O Four
C Five
```

If $y=k x$, which of the following is equal to $k y$?
A. y / x
B. x / y
C. $k x^{2}$
D. ky^{2}
E. $k^{2} x$

```
O
C
C
D
C E
```

Which of the following is equivalent to $x^{2}<-2 x$?

```
O
C
Cx
-20
-2-1
```

Which of the following is equivalent to $x^{2}-1 \geq 8$?

```
\(x \geq 3\)
C \(x \geq 9\)
\(x \geq-3\) or \(x \leq 3\)
- \(-3 \leq x \leq 3\)
C \(\mathrm{x} \leq-3\) or \(\mathrm{x} \geq 3\)
```

If $x<-3$ and $y+10=2 x$, which of the following must be true?
$x+3>0$
$y+10>0$

```
C }x+y>
O
C-16
```

Which of the following equations defines $g(x)$ in terms of $f(x)$?

C $g(x)=f(x-2)+3$
C $g(s)=f(x+2)+3$
C $g(x)=f(x-2)-3$
C $g(x)=f(x+2)-3$

- $g(x)=f(x-2)$

[^0]

O	16
C	16.5
C	17
C	17.5
C	18

Two circles both of radif 6 have exactly one point in common. If A is a point on one circle and B is a point on the other circle, what is the maximum possible length for the line segment AB?

O	12
C	15
C	18
C	20
C	24

[^0]: The following chart gives the graduation ages of 10 students? What is the median age of the graduating students?

